
Anisotropic flow of strange particles at RHIC

Eugene Zabrodin
Department of Physics, University of Oslo

September 16, 2004
SQM 2004

✦ Motivation
✦ Directed flow of strange particles at

SPS and RHIC
✦ Elliptic flow
✦ Influence of particle freeze-out on

the development of elliptic flow
✦ Conclusions

-10

0

10

-10 0 10

x 
 (

fm
)

z  (fm)

Au+Au  s1/2=130 AGeV
t = 7 fm/c
b = 8 fm

ρM
  max  =  23.3 fm-3

flow

flow

antiflow

antiflow

September 16, 2004

SQM 2004

Anisotropic flow of strange particles at RHIC (page 1)



Transverse Collective Flow of Particles

b

X

Z

Y

X

Z

Y

φ

θ
β

β

Ptot

PT

(directed or
 bounce-off flow)

(squeeze-out flow)

Reaction Plane

Tran
sv

ers
e

Plan
e

b = 3fm

bounce off

bounce off
reaction plane

off plane squeeze-out

off plane squeeze-out

Directed flow:

v1 =

〈

px

pT

〉

≡ 〈cos (φ′)〉

Flow Decomposition:

Transverse flow = Radial
+ Bounce-off + Squeeze-out

S. Voloshin and Y. Zhang, ZPC 70 (1996) 665

Modern analysis:

Transverse flow =
Radial + Directed + Elliptic + . . .
{isotropic} {anisotropic}

E
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d3p
=

1

2π
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pTdpTdy
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Elliptic flow:

v2 =

〈
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px

pT

)2

−
(

py

pT

)2
〉

≡

〈cos (2φ′)〉
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Softening of Directed Flow

L.P. Csernai, D. Röhrich, PLB 458 (1999) 454

Transition to the Quark-Gluon Plasma
−→ decrease in pressure −→ softening
of the directed flow

L. Bravina, PLB 334, 49 (1995)
H. Liu, S. Panitkin, N. Xu, PRC 59, 348 (1999)

R.J.M. Snellings et al., PRL 84, 2803 (2000)
L. Bravina et al., PRC 61, 064902 (2000)
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Wiggle structure: The effect is more
pronounced in peripheral and light-ion
collisions, therefore, it cannot be ex-
plained by the softening of the EOS
because of the formation of strings
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Development of Directed Flow

Resulting flow = normal flow - antiflow
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Although the normal flow component is
always slightly larger than the antiflow
one, in central rapidity window the anti-
flow can overshadow its normal counter-
part

L. Bravina et al., NPA 715 (2003) 665c

Directed flow v1(y, all pt) of φ, N, K in
minimum bias Au+Au events at

√
s =

130 AGeV
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Directed flow of φ mesons v1(y) has
negative slope (antiflow) at |y| ≤ 2 .
This distribution is similar to those of
other hadrons at |y| ≤ 2 in Au + Au at√

s = 130 AGeV because of similarities
of their production and dynamics
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PT Dependence of Directed Flow

L. Bravina, L. Csernai, A. Faessler, C. Fuchs, E. Z., PLB 543 (2002) 217

Kaon flow at SPS
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Strong difference between kaons and
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Kaon flow at RHIC
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No difference between kaons and
antikaons
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Directed Flow at RHIC

M.B. Tonjes et al. (PHOBOS Collab.), JPG 30 (2004) 1243

Centrality dependence of the DF of
charged particles
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(1) DF increases with rising b

(2) Exp.: antiflow increases up to
fragmentation regions

Directed flow of different species
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Antibaryons have strongest antiflow
because of annihilation
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Elliptic Flow at RHIC

E. Z., L. Bravina, A. Faessler, C. Fuchs, PLB 508 (2001) 184
PPNP 53 (2004) 183

M. Bleicher and H. Stöcker, PLB 526 (2002) 309
S. Manly et al., PHOBOS Collab., NPA 715 (2003) 614c
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(Pseudo)rapidity dependencies of the elliptic flow of charged particles in the
whole η range at both energies were obtained before the experimental data
became available
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Elliptic Flow at RHIC (Hydro)

P. Huovinen et al., PLB 503 (2001) 58
T. Hirano and K. Tsuda, NPA 715 (2003) 821c

Centrality Dependence
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not good.
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Elliptic Flow at RHIC

B. Back et al. (PHOBOS Collab.), nucl-ex/0407012
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Time Evolution of the Elliptic Flow

PIONS (Au+Au, 130 AGeV, b=8 fm)

0

0.025

0.05

0.075

0.1

-5 0 5

 v
2(

y)
π  t=20 fm/c

  10 fm/c
   8 fm/c
   6 fm/c
   4 fm/c
   2 fm/c

Freeze-out:

0

0.02

0.04

0.06

-5 0 5

 v
2(

y)

y

π  t=80 fm/c
  10 fm/c
   8 fm/c
   6 fm/c
   4 fm/c
   2 fm/c

Au+Au (b=8 fm) at 130 AGeV

Evolution:

NUCLEONS
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Evolution:

(1) The earlier the freeze-out of pions, the stronger their elliptic flow
(2) The later the freeze-out of nucleons, the stronger their elliptic flow
(3) The flow formation is not over e.g. at t = 6 fm/c due to continuous
freeze-out of particles
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Time Evolution of the Elliptic Flow

KAONS (Au+Au, 130 AGeV, b=8 fm)
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(1) The earlier the freeze-out of kaons, the stronger their elliptic flow
(2) The later the freeze-out of lambdas, the stronger their elliptic flow

This is the main difference in the formation of the elliptic flow of mesons and
baryons
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Freeze-Out and Elliptic Flow

Au+Au (b=8 fm) at
√

s = 130 AGeV
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(1) Substantial part of
hadrons leaves the sys-
tem immediately after
their production within
the first two fm/c.
(2) Baryons and mesons
are completely different:
pions emitted within
the first few fm/c carry
the strongest flow. In
contrast to pions, the
baryon fraction acquires
stronger elliptic flow
during the subsequent
rescatterings, devel-
oping the hydro-like
flow.
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Development of Elliptic Flow of K, Λ at RHIC

Anisotropy in coordinate space and elliptic flow of kaons and lambdas in
Au+Au collisions at

√
s = 130 AGeV with the impact parameter b = 8 fm.

t = 2 fm/c
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t = 4 fm/c
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Anisotropy starts to develop in the
momentum space for low momenta
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Development of Elliptic Flow at RHIC

Anisotropy in coordinate space and elliptic flow of kaons and lambdas in
Au+Au collisions at

√
s = 130 AGeV with the impact parameter b = 8 fm.

t = 8 fm/c
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Elliptic Flow at RHIC

Hydrodynamics:
P. Huovinen et al., PLB 503 (2001) 58

T. Hirano and K. Tsuda, NPA 715 (2003) 821c
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QGSM:

(1) QGSM reproduces at least quantitatively the experimental evidence of
crossing of the elliptic flow for mesons and baryons
(2) However, the magnitude of the v2(pt) distribution is underestimated
Possible explanation: jets (?!)
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Conclusions

Directed flow:

✦ Directed Flow = Normal Flow − Antiflow
Normal Flow ≥ Antiflow (except of the midrapidity range because of
Shadowing)

✦ The softening of the flow may be misinterpreted as the softening of EOS
due to formation of the QGP, but:
QGP → the effect is stronger for semi-central collisions
Shadowing → the effect is stronger for semi-peripheral and peripheral ones

✦ At RHIC: The directed flow of both mesons and baryons is antiflow-oriented
at |y| ≤ 2

Elliptic flow (EF):

✦ EF of hadrons increases with rising PT

✦ EF at y = 0 reaches maximum at t ≈ 8 fm at RHIC

✦ Elliptic flow depends strongly on particle freeze-out. The earlier the
freeze-out of mesons, the stronger the vM

2
(y = 0) , while the v2 of baryons

frozen earlier is weaker than the v2 of baryons frozen later on
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